百科知识网

正弦定理公式及推导的三种方法

发布时间:2025-10-10 | 来源:互联网转载和整理

弦定理是三角形中常见的一种关系式,它描述了三角形中各边长度和角度之间的关系。下面介绍正弦定理的公式及推导方法。

公式:

在一个三角形ABC中,设a、b、c分别为三角形中各边的长度,而A、B、C分别为三角形中各角的度数,则有正弦定理公式:

$dfrac{a}{sinA}=dfrac{b}{sinB}=dfrac{c}{sinC}$推导方法:

方法一:

我们可以从三角形的周长入手,由于三角形的周长等于三边长度之和,所以有:

a+b+c=周长又根据三角形中各角的度数之和为180°,可得:

A+B+C=180°将正弦函数的定义式应用于该三角形的三个角,得:

sinA = $dfrac{a}{c}$sinB = $dfrac{b}{c}$sinC = $dfrac{a}{c}$将以上三个等式代入正弦定理公式中,即可得到正弦定理公式。

方法二:

我们可以利用三角形的面积和正弦函数的性质来推导正弦定理公式。设三角形ABC的面积为S,则有:

S = $dfrac{1}{2}acsinB$S = $dfrac{1}{2}bcsinA$S = $dfrac{1}{2}ab sinC$将以上三个等式相加,并消去S,整理得:

$dfrac{a}{sinA}=dfrac{b}{sinB}=dfrac{c}{sinC}$即得到正弦定理公式。

方法三:

我们可以利用向量的概念来推导正弦定理公式。设三角形ABC的三个点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3),则三个向量分别为:

$overrightarrow{AB}$ = (x2 -1, y2 - y1)

$overrightarrow{BC}$ = (x3 - x2, y3 - y2)

$overrightarrow{CA}$ = (x1 - x3, y1 - y3)

由向量的叉乘公式可得:

$overrightarrow{AB}$ × $overrightarrow{BC}$ = AC × sinB$overrightarrow{BC}$ × $overrightarrow{CA}$ = AB × sinC$overrightarrow{CA}$ × $

正弦定理证明

上一篇:14支亚麻面料的优缺点

下一篇:奥雅之光如何获得奥雅之光(奥雅之光怎么结婚)

其他文章

  • 如何举报高考违规
  • 很污的言情小说大全(言情小说大全污的片段)
  • 莲蓬乳和空心手指(蓬莲乳和空无指)
  • 天娱传媒旗下有哪些艺人
  • 终极一家为什么不能看了
  • 绵阳中学2023高三复读班招生简章
  • 暴殄天物和暴殄天物的区别
  • 自招线什么意思
  • 手机白名单怎么设置
  • 美国国庆放假几天
  • 附近有那些家政公司
  • 《满江红》全文诗词
  • 俩俩仨仨是成语吗
  • 果宝特攻中的人物名字都有谁
  • 东莞哪里有小龙虾批发
  • 袁氏家谱排辈
  • 年立水素杯真的有用吗
  • 汽车保养app排名推荐
  • 桥架人工费多少钱一米
  • 晚霞的寓意和象征