百科知识网

P级数的敛散性证明,当p大于1时的,谢谢。

发布时间:2025-10-09 | 来源:互联网转载和整理

证明:

当p>1时,p-级数前2^k向的部分和

S(p)=1+1/2^p+1/3^p+……+1/[(2^k)^p]=1+[1/2^p+1/3^p]+[1/4^p+1/5^p+1/6^p+1/7^p]+……+{1/[2^(k-1)]^p+1/[2^(k-1)+1]^p+……+1/(2^k-1)^p}+1/[(2^k)^p](p)有界

而对于任意n,存在k,使n≤2^k,从而S<[2^(p-1)]/[2^(p-1)-1]

所以P级数收敛

扩展资料性质:

关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

如果给定一个定义在区间i上的函数列,u1(x),u2(x),u3(x)......至un(x).......则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数

对于每一个确定的值X0∈I,函数项级数⑴成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+....(2)这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。

函数项级数(1)的收敛点的全体称为他的收敛域,发散点的全体称为他的发散域对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项级数,因而有一确定的和s。

这样在收敛域上,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数⑴的前n项部分和记作Sn(x),则在收敛域上有limn→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项(当然只有x在收敛域上rn(x)才有意义,并有limn→∞rn(x)=0。

p级数的收敛性结论

上一篇:单联单控开关怎么接线

下一篇:闫华红和郑晓博哪个好

其他文章

  • 如何举报高考违规
  • 很污的言情小说大全(言情小说大全污的片段)
  • 莲蓬乳和空心手指(蓬莲乳和空无指)
  • 天娱传媒旗下有哪些艺人
  • 终极一家为什么不能看了
  • 绵阳中学2023高三复读班招生简章
  • 暴殄天物和暴殄天物的区别
  • 自招线什么意思
  • 手机白名单怎么设置
  • 美国国庆放假几天
  • 附近有那些家政公司
  • 《满江红》全文诗词
  • 俩俩仨仨是成语吗
  • 果宝特攻中的人物名字都有谁
  • 东莞哪里有小龙虾批发
  • 袁氏家谱排辈
  • 年立水素杯真的有用吗
  • 汽车保养app排名推荐
  • 桥架人工费多少钱一米
  • 晚霞的寓意和象征