可导函数的导函数一定连续吗
发布时间:2025-10-09 | 来源:互联网转载和整理
可导函数的导函数不一定连续。
可导函数的导函数不一定连续,可以有震荡间断点,例如:把f(t)=sin(1/t)*t^2的可去间断点t=0补充定义f(0)=0,得到的新函数可导,导函数在t=0处间断。
在微积分学中,一个实变量函数是可导函数,若其在定义域中每一点导数存在。直观上说函数图像在其定义域每一点处是相对平滑的,不包含任何尖点、断点。
关于函数的可导导数和连续的关系:
1、连续的函数不一定可导。
2、可导的函数是连续的函数。
3、越是高阶可导函数曲线越是光滑。
4、存在处处连续但处处不可导的函数。
上一篇:汽车改色膜价格多少?
下一篇:属蛇和属狗的情感终极配对