参数方程是什么意思
发布时间:2025-10-09 | 来源:互联网转载和整理
一般地在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:
平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。
曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程x=a+rcosθy=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。
椭圆的参数方程x=acosθ y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。
双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数。
抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数。
并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言直接给出点坐标间关系的方程为普通方程。
直线的参数方程x=x'+tcosay=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。
扩展资料积分的保号性:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论如果两个等于0,那么任何可积函数在A上的积分等于0。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
某个测度为0的***上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。
上一篇:dnf女圣职者有哪些职业