百科知识网

矩阵的秩和特征值之间的关系

发布时间:2025-10-09 | 来源:互联网转载和整理

关系:

1、方阵A不满秩等价于A有零特征值。

2、A的秩不小于A的非零特征值的个数。证明:定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。 定理2:设A为n阶实对称矩阵,则A必能相似对角化。 定理3:设A为n阶实对称矩阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0恰为A的n-k重特征值。 定理4:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0至少为A的n-k的重特征值。 定理5:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),且A可相似对角化,则λ=0恰为A的n-k重特征值。 定理6:设A为n阶方阵,矩阵的秩rf(A)=k,(0<k<n,k为正整数),且A可对角化,则λ=0恰为f(A)的n-k重特征值。 例1:设矩阵A=12 3 424 6 836 912481216 ,求矩阵A的特征值,矩阵A的秩。 解:得到A→12 3 400 0 000 0 000 0 0 ,则矩阵A的秩r(A)=1。 通过上例,我们发现λ=0为A的三重特征值,而A的秩r(A)=4-3=1。下面的定理给出了相应的结论。 证:由定理2,实对称矩阵必能相似对角化,所以A必有n个线性无关的特征向量,即每一个特征值对应一个线性无关的特征向量,重根对应线性无关的特征向量的个数等于其重数,故由秩r(A)=k,(0<k<n,k为正整数),则λ=0对应的特征向量恰有n-k个,即λ=0恰为A的n-k重特征值。 以上例题和相关定理均给出了矩阵的秩得到矩阵的特征值的情况,反过来,若n阶方阵A恰有k(0<k<n)个特征值为0,则矩阵A的秩大于等于n-k。所以方阵A不满秩等价于A有零特征值,A的秩不小于A的非零特征值的个数。

特征值与秩的关系

上一篇:八大员证有什么用

下一篇:宁夏石嘴山市是几类地区

其他文章

  • 如何举报高考违规
  • 很污的言情小说大全(言情小说大全污的片段)
  • 莲蓬乳和空心手指(蓬莲乳和空无指)
  • 天娱传媒旗下有哪些艺人
  • 终极一家为什么不能看了
  • 绵阳中学2023高三复读班招生简章
  • 暴殄天物和暴殄天物的区别
  • 自招线什么意思
  • 手机白名单怎么设置
  • 美国国庆放假几天
  • 附近有那些家政公司
  • 《满江红》全文诗词
  • 俩俩仨仨是成语吗
  • 果宝特攻中的人物名字都有谁
  • 东莞哪里有小龙虾批发
  • 袁氏家谱排辈
  • 年立水素杯真的有用吗
  • 汽车保养app排名推荐
  • 桥架人工费多少钱一米
  • 晚霞的寓意和象征