矩阵的秩和特征值之间的关系
发布时间:2025-10-09 | 来源:互联网转载和整理
关系:
1、方阵A不满秩等价于A有零特征值。
2、A的秩不小于A的非零特征值的个数。证明:定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。 定理2:设A为n阶实对称矩阵,则A必能相似对角化。 定理3:设A为n阶实对称矩阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0恰为A的n-k重特征值。 定理4:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0至少为A的n-k的重特征值。 定理5:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),且A可相似对角化,则λ=0恰为A的n-k重特征值。 定理6:设A为n阶方阵,矩阵的秩rf(A)=k,(0<k<n,k为正整数),且A可对角化,则λ=0恰为f(A)的n-k重特征值。 例1:设矩阵A=12 3 424 6 836 912481216 ,求矩阵A的特征值,矩阵A的秩。 解:得到A→12 3 400 0 000 0 000 0 0 ,则矩阵A的秩r(A)=1。 通过上例,我们发现λ=0为A的三重特征值,而A的秩r(A)=4-3=1。下面的定理给出了相应的结论。 证:由定理2,实对称矩阵必能相似对角化,所以A必有n个线性无关的特征向量,即每一个特征值对应一个线性无关的特征向量,重根对应线性无关的特征向量的个数等于其重数,故由秩r(A)=k,(0<k<n,k为正整数),则λ=0对应的特征向量恰有n-k个,即λ=0恰为A的n-k重特征值。 以上例题和相关定理均给出了矩阵的秩得到矩阵的特征值的情况,反过来,若n阶方阵A恰有k(0<k<n)个特征值为0,则矩阵A的秩大于等于n-k。所以方阵A不满秩等价于A有零特征值,A的秩不小于A的非零特征值的个数。
上一篇:八大员证有什么用
下一篇:宁夏石嘴山市是几类地区