二项分布的期望和方差公式推导
发布时间:2025-10-09 | 来源:互联网转载和整理
二项分布的期望和方差公式推导如下:
1、二项分布求期望:
公式:如果r~B(r,p),那么E(r)=np。
示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的期望。E(r)=np=4×0.25=1(个),所以这四道题目预计猜对1道。
2、二项分布求方差:
公式:如果r~B(r,p),那么Var(r)=npq。
示例:沿用上述猜小球在哪个箱子的例子,求猜对这四道题目的方差。
Var(r)=npq=4×0.25×0.75=0.75。
扩展资料:
由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。
设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n)。
因X(k)相互独立,所以期望:E(x)=E[X(1)+X(2)+X(3).....+X(n)]=np。
方差:D(x)=D[X(1)+X(2)+X(3)....+X(n)]=np(1-p)。