负定矩阵的判定方法
发布时间:2025-10-06 | 来源:互联网转载和整理
实对称矩阵A是负定的,如果二次型f(x1,x2,xn)=X'AX负定。矩阵负定的充分必要条件是它的特征值都小于零。若矩阵A是n阶负定矩阵,则A的偶数阶顺序主子式大于0,奇数阶顺序主子式小于0。负定矩阵是矩阵类中的一种特殊矩阵,它在矩阵理论中占有重要地位。
矩阵与方程组、行列式联系紧密,又是与自然科学和工程技术相关的数学应用的内容,矩阵变换是基本的数学方法,矩阵在数学中,乃至其他学科中应用广泛。负定矩阵是矩阵类中的一种特殊矩阵,它在矩阵理论中占有重要地位。负定矩阵可以看成是与正定矩阵对应的概念,负定矩阵与正定矩阵有着许多相似的性质。
上一篇:大亚板是什么板材
下一篇:oppo手机相机怎么设密码