复数的模是什么
发布时间:2025-10-06 | 来源:互联网转载和整理
设复数z=a+bi(a,b∈R)则复数z的模|z|=√a²+b²。
它的几何意义是复平面上一点(a,b)到原点的距离。
|z|^2=(a+bi)(a-bi)。
|z1·z2|=|z1|·|z2|。
┃|z1|-|z2|┃≤|z1+z2|≤|z1|+|z2|。
|z1-z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。