第二次数学危机如何解决的
2025-10-11
直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、狄德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。 波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西在1821年的《代数分析教程》中从定义变量出发,认识到函数不一定要有解析表达式;他抓住极限的概念...
数学史上三次危机分别是,数学史上第三次数学危机
2025-10-10
1.数学发展史上的三次危机无理数的发现:第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。 2.这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的危机,从而产生了第一次数学危机。 3.第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。 4.1734年,英国哲学家...
第二次数学危机的详情
2025-10-06
第二次数学危机 大家知道在公元前5世纪出现了数学基础的第一次灾难性危机,这就是无理数的诞生。这次危机的产生和解决大大地推动了数学的发展。 到了17世纪的后期,出现了一次崭新的数学分支——数学分析,或称微积分。它在数学领域中占据着主导地位,这种新数学的特点是,非常成功地运用了无限过程的运算,即极限运算,而其中的微分和积分这两个过程则构成了微分学和积分学的核心,并奠定了全部分析学的基础。...