百科知识网

怎么解方程组

发布时间:2025-10-11 | 来源:互联网转载和整理

怎么解方程组介绍如下:

解二元一次方程组有两种方法:(1)代入消元法;(2)加减消元法

(1)代入消元法

例:解方程组:x+y=5①

6x+13y=89②

由①得  x=5-y③

把③代入②,得

6(5-y)+13y=89

即y=59/7

把y=59/7代入③,得x=5-59/7

即x=-24/7

∴x=-24/7

y=59/7为方程组的解

我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法.

(2)加减消元法

例:解方程组:x+y=9①

x-y=5②

①+②得 2x=14

即x=7

把x=7代入①,得7+y=9

解,得:y=2

∴x=7

y=2为方程组的解

像这种解二元一次方程组的方法叫做加减消元法,简称加减法.

什么是方程组?

方程组又称联立方程。把若干个方程合在一起研究,使其中的未知数同时满足每一个方程的一组方程。能同时满足方程组中每个方程的未知数的值,称为方程组的“解”。求出它所有解的过程称为“解方程组”。

解方程组的总体思想是消元,其中包括加减消元法和代入消元法。

扩展资料

对于方程组Ax=b,如果A是行满秩的矩阵,那么方程组要么有唯一解,要么有无穷多解。

如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。

比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。

A的形式要么是矮且胖要么是方阵(矩阵的列不可能小于矩阵的行数),如果矩阵A矮且胖的话,那么对线性方程组的约束的个数(矩阵的行数)小于未知数的个数,那就是无穷多解。矩阵A是方阵,根据克拉默法则我们也能得出是唯一解。

矩阵解方程组六个步骤

上一篇:从此不早朝出自哪首诗

下一篇:农业银行etc怎么办理 主要有四种办理方式

其他文章

  • 如何举报高考违规
  • 很污的言情小说大全(言情小说大全污的片段)
  • 莲蓬乳和空心手指(蓬莲乳和空无指)
  • 天娱传媒旗下有哪些艺人
  • 终极一家为什么不能看了
  • 绵阳中学2023高三复读班招生简章
  • 暴殄天物和暴殄天物的区别
  • 自招线什么意思
  • 手机白名单怎么设置
  • 美国国庆放假几天
  • 附近有那些家政公司
  • 《满江红》全文诗词
  • 俩俩仨仨是成语吗
  • 果宝特攻中的人物名字都有谁
  • 东莞哪里有小龙虾批发
  • 袁氏家谱排辈
  • 年立水素杯真的有用吗
  • 汽车保养app排名推荐
  • 桥架人工费多少钱一米
  • 晚霞的寓意和象征