正多边形定义是什么
发布时间:2025-10-06 | 来源:互联网转载和整理
正多边形定义如下:
正多边形就是各边相等,各角也相等的多边形,直尺、圆规和量角器可以画出任意正多边形。此定义中的条件各边相等。各角也相等“缺一不可”。如菱形各边相等,因四个角不等,所以菱形不一定是正多边形。
正多边形的特点:
正多边形的外接圆的圆心叫做正多边形的中心。
正多边形的外接圆的半径叫做正多边形的半径。
中心到圆内接正多边形各边的距离叫做边心距。
正多边形各边所对的外接圆的圆心角都相等,这个圆心角叫做正多边形的中心角。
在正多边形中,只有三种能用来铺满一个平面而中间没有空隙,就是正三角形、正方形、正六边形。因为正三角形的每一个角等于60度,六个正三角形拼在一起时,在公共顶点上的六个角之和等于360度。
正方形的每个角等于90度,所以四个正方形拼在一起时,在公共顶点上四个角的和也刚好等于360度;正六边形的每个角等于120度,三个正六边形拼在一起时,在公共顶点上的三个角之和也等于360度。
上一篇:王毓楼(关于王毓楼介绍)