简述深度学习的基本方法。
发布时间:2025-10-10 | 来源:互联网转载和整理
深度学习算法以下三种:回归算法。回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法,是统计机器学习的利器。基于实例的算法。
深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习的代表算法之一。
深度学习的具体过程可简述为:挖掘所给样本数据的内在规律与联系,提取、分析样本的特征信息,如图像、文本和声音,处理数据信息并发出指令,控制机器的行为,使机器具有类似于人类的学习、分析、识别、处理等能力。
)机器学习(MachineLearning)是一个大的方向,里面包括了很多种approach,比如deeplearning,GMM,SVM,HMM,dictionarylearning,knn,Adaboosting不同的方法会使用不同的模型,不同的假设,不同的解法。
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。
深度学习是机器学习领域中对模式(声音、图像等等)进行建模的一种方法,它也是一种基于统计的概率模型。
下一篇:数的多音字造句