椭圆的参数方程是怎么证明出来的
发布时间:2025-10-08 | 来源:互联网转载和整理
椭圆的参数方程推导过程:
(1)的平方加(2)的平方
化简得:
证明:将任意一点P的坐标(Rsinθ-c,Rcosθ)代入方程
=
说明P点是椭圆标准方程上的一点。
扩展资料:
常见的参数方程——
曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程x=a+rcosθy=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。
椭圆的参数方程x=acosθ y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。
双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数。
抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数。
直线的参数方程x=x'+tcosay=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。
或者x=x'+ut, y=y'+vt(t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)。
圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
上一篇:几何A的车型是什么?
下一篇:卜算子咏梅陆游的原文和翻译