百科知识网

可导与连续的关系(可导)

发布时间:2025-10-08 | 来源:互联网转载和整理

1、展开1全部 某点可导定义:设函数y = f (x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处取得增量 △x(x0+△x 仍在该邻域内)时,相应的因变量y 取得增量 △y = f (x0 + △x) - f (x0) ;若 △y 与 △x 之比当△x ->0 时的极限存在。

2、则称函数y = f (x) 在点x0 处可导,并称这个极限值为函数y = f (x) 在点x0 处的导数,记为y ‘(x0) 如果函数 y = f (x) 在开区间 I 内的每点处都可导。

3、则称函数 f (x) 在开区间 I 内可导。

连续和可导的关系

上一篇:花样盘发器的使用方法

下一篇:si的本征载流子浓度是多少

其他文章

  • 如何举报高考违规
  • 很污的言情小说大全(言情小说大全污的片段)
  • 莲蓬乳和空心手指(蓬莲乳和空无指)
  • 天娱传媒旗下有哪些艺人
  • 终极一家为什么不能看了
  • 绵阳中学2023高三复读班招生简章
  • 暴殄天物和暴殄天物的区别
  • 自招线什么意思
  • 手机白名单怎么设置
  • 美国国庆放假几天
  • 附近有那些家政公司
  • 《满江红》全文诗词
  • 俩俩仨仨是成语吗
  • 果宝特攻中的人物名字都有谁
  • 东莞哪里有小龙虾批发
  • 袁氏家谱排辈
  • 年立水素杯真的有用吗
  • 汽车保养app排名推荐
  • 桥架人工费多少钱一米
  • 晚霞的寓意和象征