求简短的数学趣味题!50道、
发布时间:2025-10-06 | 来源:互联网转载和整理
求简短的数学趣味题!50道、1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么苍蝇总共飞行了多少英里?答案:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(JohnvonNeumann,1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道2、有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。在静水中渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然这并不是他相对于河岸的速度。例如当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?答案:由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说这种设想和上述情况毫无无差别。既然渔夫离开草帽后划行了5英里,那么他当然是又向回划行了5英里,回到草帽那儿。因此相对于河水来说他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是他在下午4时找回了他那顶落水的草帽。这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?答案:怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。风越大平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何?原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。设x为雉数,y为兔数,则有x+y=b,2x+4y=a解之得y=b/2-a,x=a-(b/2-a)根据这组公式很容易得出原题的答案:兔12只,雉22只。5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。经调查得知若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。每间住了人的客房每日所需服务、维修等项支出共计40元。问题:我们该如何定价才能赚最多的钱?答案:日租金360元。虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入;扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。当然所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。6数学家维纳的年龄,全题如下:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少?解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481;综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。所以维纳的年龄应是18。有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香蕉?25根。先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。
把一张纸裹在一支粉笔上,再用刀斜着把粉笔切断,请问把纸展开后断边为什么形状?答案:正弦曲线大雪后的一天,婷婷和爸爸从同一点出发沿同一方向分别步测一个圆形花园的周长。婷婷毎步长54厘米,爸爸毎步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。问:这个花园的周长是多少米?理由,列式假设法求54和72的最小公倍数216即求216厘米***有几个脚印216/54+216/72-1(因为刚开始两人脚印重合)=4+3-1=660/6=10216*10=2160(cm)五年级奥数包含与排除1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?解:两个小组共有(15+18)-10=23(人),都不参加的有40-23=17(人)答:有17人两个小组都不参加。--2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?解:45-29-10+3=9(人)答:语文成绩得满分的有9人。3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。面向老师的人数=50-12=38(人)答:现在面向老师的同学还有38名。4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33共需要68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232支。5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。剪89次,变成89+1=90段答:绳子共被剪成了90段。6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)答:其他年级的画共有3幅。---7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么这些卡片一共有多少张?解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36张。----8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。1000-314=686答:既不能被5除尽,又不能被7除尽的数有686个。---9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。解:25+35+27-(8+12+9)+4=62(人)答:这个班的学生人数是62人。----10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2阴影部分面积=73-(6+8+5)+2*2=58答:阴影部分的面积是58。--11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21答:参加文艺小组的人数是21人。--12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。--13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点答:在这个五角星上红色点最少有9960个。--14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)答:3人都浇过的花最少有4盆。
--15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。答:甲、乙、丙3人共同读过的故事最少有12个。--15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。答:甲、乙、丙3人共同读过的故事最少有12个。
--以下是引用abc在2004-12-1215:42:17的发言:8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。1000-314=686答:既不能被5除尽,又不能被7除尽的数有686个。题中的除尽应该是整除吧.
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21答:参加文艺小组的人数是21人。1.四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》或《学与玩》的有多少人?2.幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?3.1至100的自然数中:(1)是2的倍数又是3的倍数的数有多少个?(2)是2的倍数或是3的倍数的数有多少个?(3)是2的倍数但不是3的倍数的数有多少个?4.某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?5.全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?6.一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个班两队都参加的有多少人?【****】1.四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》或《学与玩》的有多少人?19+24—13=30(人)答:订阅《少年文摘》或《学与玩》的有30人。2.幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?只学钢琴人数:58—37=21(人)只学画画人数:43—37=6(人)3.1至100的自然数中:(1)是2的倍数又是3的倍数的数有多少个?既是3的倍数又是2的倍数,一定是6的倍数100÷6=16……4所以既是2的倍数又是3的倍数有16个(2)是2的倍数或是3的倍数的数有多少个?100÷2=50,100÷3=33……150+33—16=67(个)所以是2的倍数或是3的倍数的数有67个。(3)是2的倍数但不是3的倍数的数有多少个?50—16=34(个)答:是2的倍数但不是3的倍数的数有34个。4.某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?12+10—3+26=45(人)答:这个班共有学生45人。5.全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?50—(30+21—8)=7(人)答:两样都不会的有7人。6.一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个班两队都参加的有多少人?30+25—42=13(人)答:这个班两队都参加的有13人。某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?分析与解如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.由容斥原理有Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3即y=20+20+20-7-8-9+x+3=39+x。以下我们考察如何求y的最大值与最小值。由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。答:这个班最多有46人,最少有39人。就这么多了啊欢迎追问啊!
简短的趣味语文说具体点
求两则简短的数学故事,急用今天是10月15日星期六,我和爸爸到南大街逛商场。早上8点多钟,我们就乘车来到了南大街。正巧站台边有一位老爷爷,他的身边有一台“会说话”的秤。看到我走过来,老爷爷笑着说:“小朋友,称体重吗?我有点好奇地问:“称一次要多少钱呀?”老爷爷爽快的回答:“称一次只要1元,而且还可以量出身高呢!”我想:这真是一举两得呀!于是,我在秤上站稳。老爷爷把开关打开,只觉得有个软软的东西往我的头顶上一碰,随后,机器上打印出一张小长方形的纸条,上面写着:“体重:27.0公斤身高132.5厘米”呀!这半年我长高了4厘米,可是体重呢?这时,我记起数学课上老师说过,“千克”还有一个名字就叫“公斤”,没想到今天被我遇见了,而且我知道我的体重增加了2千克呢!回来的路上,我好开心啊!我一定要把身体锻炼的棒棒的!《比一比,谁用的单位多?》湖塘桥中心小学三(2)班曹可斐早上,我从长大约2米的床上爬起来;拿起一枝长大约6厘米的牙刷开始刷牙;接着拿起一块长40厘米,宽20厘米的毛巾开始洗脸。洗漱结束后我拿了一只重大约100克的碗盛满稀饭;吃完后,我背着重大约2千克的书包来到学校,开始了40分钟的早读课;两节课后,我们都站在高大约7米的国旗杆下做操。好了我就说这么多,你能比我说得更多更流利吗?
初一或初二的数学趣味问题,要答案,简短一点随意写一串数字例如1098547566然后把这串数字倒一下变成6657458901用新数字串减去以前的数字串得出6657458901-1098547566=5558911335然后将得出的结果各个数字相加5+5+5+8+9+1+1+3+3+5=45然后再4+5=9不管初始写的是什么按照这样的过程最终得出的结果必定是9再举例20080808奥运会跌倒一下变成80808002相减80808002-20080808=607271946+0+7+2+7+1+9+4=363+6=9
谁知道世界的数学名题要有的简短的有兴趣去找下费马大定理的证明,怀尔斯几年研究的成果.或者去找找最新成果庞加莱猜想的证明,如果你能看懂我佩服你.
一道简单而又趣味的数学题1000/((根号x)-1)米
趣味的数学小短文
上一篇:南方的冬天有什么特点