求约数个数的公式
发布时间:2025-10-06 | 来源:互联网转载和整理
n的约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1)。
整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。在大学之前约数一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。
约数的辗转相除法介绍:
(欧几里得算法)对要求最大公因数的两个数a、b,设b<a,先用b除a,得a=bq+r1(0≤r1<b)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b=r1q+r2(0≤r2<r1)。
若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1……如此循环,直到能整除为止。其最后一个非零余数即为(a,b)。