百科知识网

数学发展的历史介绍是什么

发布时间:2025-10-06 | 来源:互联网转载和整理

数学发展的历史介绍如下:

第一阶段:数学的萌芽时期(公元前4000年—公元前六世纪)。

随着远古人类的发展,生活中慢慢涉及到数的应用,人类建立了最基本的数学概念。自然数出现了,有了简单的计算,并认识了最基本最简单的几何图形。

这一阶段数学发展的杰出代表为古巴比伦数学、中国数学、埃及数学等。这个时期的数学知识大致相当于幼儿园和小学一二年级的内容,甚至比这个还要简单。

第二阶段:初等数学和常量数学时期(公元前6世纪—公元十六世纪末)。

随着历史的前进,数学也得到了极大发展。这一时期希腊的数学家把数学向前推进了一大步。以欧几里得的《几何原本》为代表,引入了公理体系和严谨的证明,使数学变得更加完备,把数学由单纯具体的测量得出结论变为严格的抽象证明。

毕达哥拉斯学派完整了勾股定理的严谨证明进而发现了无理数,也由此引发了第一次数学危机。这也使得数学从有理数发展到了无理数。

第三阶段:变量数学阶段(公元十七世纪—十九世纪中后期)。

这一阶段也叫做近代数学阶段,数学得到了飞速发展。而我国正处在闭关锁国的大清王朝。

这一阶段的标志是数学由常量转变为变量,其发展有两个里程碑。

第一个里程碑是解析几何的诞生。1637年法国数学家笛卡尔发明了坐标系,创立了解析几何,将变量引入数学,也把数字与图形结合了起来,为微积分的开创奠定的基础。

第二里程碑是微积分的创立。英国科学史上最伟大的人物—牛顿,从物理的运动入手,通过引入无穷小量的概念,于1669年提出了微积分的概念,为近代数学的发展提供力最有利的工具,开辟了数学的新纪元。更是把数学从静态常量阶段推向了动态变量的研究阶段。

第四阶段:现代数学时期(1874年以后)。

1874年德国数学康托创立了***论,标志着现代数学时期的到来,同时也是纯粹数学的开始。数学界三大巨头庞加莱、克莱因、希尔伯特的出现,也预示着数学更加的抽象和纯粹。也导致了实变函数、泛函分析、拓扑学和抽象代数四大抽象分支的崛起。

尽管由***论所引发的第三次数学危机依然没有解决,但我们相信,危机的到来依然是数学发展的动力,危机的解决一定会让数学更上一层楼,这已经有前两次数学危机所证实。当然了这一阶段的数学知识已经远远超出普通人所能理解的范围,除了专门的数学人才,其他人估计一辈子也不会碰到更不会直接用到。

数学的历史

上一篇:嗑cp伏黛是什么意思

下一篇:简谱可以弹钢琴吗

其他文章

  • 如何举报高考违规
  • 很污的言情小说大全(言情小说大全污的片段)
  • 莲蓬乳和空心手指(蓬莲乳和空无指)
  • 天娱传媒旗下有哪些艺人
  • 终极一家为什么不能看了
  • 绵阳中学2023高三复读班招生简章
  • 暴殄天物和暴殄天物的区别
  • 自招线什么意思
  • 手机白名单怎么设置
  • 美国国庆放假几天
  • 附近有那些家政公司
  • 《满江红》全文诗词
  • 俩俩仨仨是成语吗
  • 果宝特攻中的人物名字都有谁
  • 东莞哪里有小龙虾批发
  • 袁氏家谱排辈
  • 年立水素杯真的有用吗
  • 汽车保养app排名推荐
  • 桥架人工费多少钱一米
  • 晚霞的寓意和象征