反函数求导公式推导怎么理解
2025-10-10
首先要保证函数y=f(x)在包含a点的开区间I上严格单调且连续,如果这函数在a点可导并且导数f'(a)≠0,那么反函数x=g(y)在点b=f(a)可导,且g'(b)=1/f'(a)=1/f'(g(b))。 证明:在所给条件下,函数x=g(y)也严格单调且连续。于是当y≠b,y→b时,有g(y)≠g(b),g(y)→g(b)。因而:...
2025-10-10
首先要保证函数y=f(x)在包含a点的开区间I上严格单调且连续,如果这函数在a点可导并且导数f'(a)≠0,那么反函数x=g(y)在点b=f(a)可导,且g'(b)=1/f'(a)=1/f'(g(b))。 证明:在所给条件下,函数x=g(y)也严格单调且连续。于是当y≠b,y→b时,有g(y)≠g(b),g(y)→g(b)。因而:...